Abstract

The hydrogen-bonded isoelectronic complexes of aniline with HF/F- and an ionic form of aniline with HF were investigated by use of computational methods: Symmetry-Adapted Perturbation Theory (SAPT), Atoms in Molecules (AIM), and Natural Bond Orbitals (NBO) approaches. All computations were based on structural models previously generated at the B3LYP/6-311+(d,p) level. The differences between neutral (Ph-NH2...HF)and anionic (Ph-NH2...F- and Ph-NH-...HF) complexes were clearly outlined. The discussed charged complexes serve as Lewis acids and base, HF and F-, respectively. It was found that electrostatic and induction energy terms, obtained as a result of the SAPT method, are most dependent on the type of H-bonding (i.e.,charged or neutral). The electrostatic term is the most distinctive between the neutral and charge-assisted hydrogen bonds in the investigated two-body systems, whereas the latter is more significant in the case of weaker interactions (larger H...B distances). Application of Principal Component Analysis (PCA) to energy components obtained from the SAPT procedure indicated that all of them are relatively well intercorrelated.The above-mentioned terms together with the exchange energy terms are the most important contributions ofthe main principal component, which describes 95% of the total variance. Comparison of AIM parameters in bond critical points for modeled H-bond systems shows a good agreement with those from equilibrium complexes, both experimental and calculated ones. It was found that charged H-bonded complexes exhibit larger fluctuation of electron density and its Laplacian in bond critical points, in line with SAPT analysis. NBO results confirmed the effect of the strength of interaction on property changes both in the region of H-bonding and outside of it. The latter, more distant consequences follow the Bent-Walsh rule for all studied complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.