Abstract

Stable isotope ratios of hydrogen and oxygen of water are useful tracers of the hydrological cycle. For example, isotopes monitor the evapotranspiration in vegetated areas, local snow ice processes and stream water flow processes. δ18O and δD in rainwater reflect the processes of evaporation, condensation and precipitation. Heavy rains thus modify the stable isotope ratio of ground water, stream water and transpiration water vapor. However, the controlling factors of δ18O and δD are not clear. Here we analyzed the inorganic ion concentration and stable isotope ratio in 38 normal rainwater and 15 heavy rainwater samples were collected in Shinjuku, Tokyo, Japan, during four years from October 2012 to December 2015. Results show a decrease in δ18O and δD values with the total rainfall amount, thus highlighting the amount effect. δ18O and δD volume-weighted mean values in typhoon heavy rain were higher than the values estimated from amount effect, whereas δ18O and δD volume-weighted mean values in urban-induced heavy rain were lower. Typhoon heavy rain has high Na+ ratio and stable isotope ratios, while urban-induced heavy rain has low Na+ ratio and stable isotope ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.