Abstract

Amino acid (and related drug) absorption across the human small intestinal wall is an essential intestinal function. Despite the revelation of a number of mammalian genomes, the molecular identity of the classic Na(+)-dependent imino acid transporter (identified functionally in the 1960s) remains elusive. The aims of this study were to determine whether the recently isolated complementary DNA hPAT1 (human proton-coupled amino acid transporter 1), or solute carrier SLC36A1, represents the imino acid carrier; the Na(+) -dependent imino acid transport function measured at the brush-border membrane of intact intestinal epithelia results from a close functional relationship between human proton-coupled amino acid transporter-1 and N(+) /H(+) exchanger 3 (NHE3). PAT1 function was measured in isolation ( Xenopus laevis oocytes) and in intact epithelia (Caco-2 cell monolayers and rat small intestine) by measurement of amino acid and/or H(+) influx. Tissue and membrane expression of PAT1 were determined by reverse-transcription polymerase chain reaction and immunohistochemistry. PAT1-specific immunofluorescence was localized exclusively to the luminal membrane of Caco-2 cells and human and rat small intestine. The substrate specificity of hPAT1 is identical to that of the imino acid carrier. In intact epithelia, PAT1-mediated amino acid influx is reduced under conditions in which NHE3 is inactive. The identification in intact epithelia of a cooperative functional relationship between PAT1 (H(+) /amino acid symport) and NHE3 (N(+) /H(+) exchange) explains the apparent Na + dependence of the imino acid carrier in studies with mammalian intestine. hPAT1 is the high-capacity imino acid carrier localized at the small intestinal luminal membrane that transports nutrients (imino/amino acids) and orally active neuromodulatory agents (used to treat affective disorders).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.