Abstract
Complementary scanning tunneling microscopy and surface infrared measurements show that H reacts strongly with Al(111), producing a variety of new alane (aluminum hydride) surface species. Alane oligomers, ranging in size from the monomer to 30-mers, form through a sequence of surface etching and condensation reactions. Atomic hydrogen initiates production by extracting aluminum atoms from the surface lattice to create mobile monohydride monomers (ad-AlH), which predominate in the low-coverage regime. At higher hydrogen coverages, multihydride oligomers form in coexistence with the ad-AlH. These alane oligomers are more thermally stable, remaining on the surface at room temperature, where they are directly imaged. The mass transfer of aluminum to surface alanes is discussed in relationship to alane stoichiometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.