Abstract

AbstractThis paper presents a novel approach to improving our understanding of complicated slope failure mechanisms that can occur in strain-softening material as well as to evaluating the accompanying postfailure deformation of slopes. Three cutting-edge technologies were integrated into one numerical analysis tool: (1) a large-deformation analysis using the updated Lagrangian formulation, (2) a stable numerical algorithm for the solution of progressive failure in strain-softening materials, and (3) an h-adaptive mesh refinement algorithm. The significance of this study is mainly in the adoption of a proper numerical discretization for cases of slope failure in which large deformations lead to distortion of the finite-element mesh, unreliable results, and lack of convergence. The h-adaptive remeshing technique is used to refine the finite-element mesh around the area of large shear strain, thereby improving the accuracy and convergence of numerical solutions. This study presents a method that can be used...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.