Abstract

One purpose of the current study was to establish whether vasoconstriction occurs in all vessel types in response to H(2)O(2). Isometric force was measured in pulmonary venous and arterial rings, and isobaric contractions were measured in mesenteric arteries and veins in response to H(2)O(2). A second purpose was to determine whether H(2)O(2)-induced contraction is calcium independent. The addition of H(2)O(2) to calcium-depleted (using the Ca(2+) ionophore ionomycin in zero calcium EGTA buffer) muscle caused contraction. Furthermore, permeabilized muscle contracted in response to H(2)O(2) even in zero Ca(2+). The final purpose was to determine whether the 20-kDa regulatory myosin light chain (MLC(20)) phosphorylation plays a role in H(2)O(2)-induced contraction. Pulmonary arterial strips were freeze-clamped at various time points during H(2)O(2)-induced contractions, and the relative amounts of phosphorylated MLC(20) were measured. H(2)O(2) caused dose-dependent contractions that were independent of MLC(20) phosphorylation. ML-9, a myosin light chain kinase inhibitor, had no effect on the H(2)O(2) contractile response. In conclusion, H(2)O(2) induces Ca(2+)- and MLC(20) phosphorylation-independent contraction in pulmonary and systemic arterial and venous smooth muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call