Abstract

In the current study, a mathematical model is developed to visualize the mixed convection boundary layer flow of a nanofluid containing gyrotactic microorganisms past a permeable vertical surface saturated in a porous medium with variable viscosity and velocity slip effects. Suction/injection impact is taken into detail through the flow with heat and mass transfer analysis. Appropriate transformations are applied to transform the governing partial differential equations into non-linear ordinary differential equations, before being solved numerically using Runge-Kutta procedure is used with shooting technique. A parametric study focusing the influence of involved parameters on various fields such as the local skin friction coefficient, local Nusselt number are graphed via plots along with the local Sherwood number and motile microorganisms density number. The present results indicate that the motile microorganism number is enhanced for increasing Peclet number estimations. Moreover, the growing in the thermophoresis parameter leads to sufficient enhancement in the skin friction coefficient, Sherwood number and the density of the motile microorganism number for injection case, while the opposite behavior occurred with suction case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.