Abstract

Recent theoretical findings suggest that in perfectly quasi-isodynamic stellarators, the trapped-particle instability as well as the ordinary electron-density-gradient-driven trapped-electron mode are stable in the electrostatic and collisionless approximation. In these configurations contours of constant magnetic field strength B are poloidally closed, the second adiabatic invariant J is constant on flux surfaces and peaks in the centre. It follows that the diamagnetic drift frequency ω*α and the bounce-averaged magnetic drift frequency are in opposite directions, 0, everywhere on the flux surface. This is the signature of average "good curvature" for trapped particles and, thanks to this property, particles that bounce faster than the frequency of any unstable mode must draw energy from it near marginal stability. Consequently, the point of marginal stability cannot exist for the collisionless trapped-particle mode, and hence this mode will be absent. By a similar argument, the ordinary trapped-electron mode is also stable. Because perfect quasi-isodynamicity can never be reached, it is necessary to test configurations approaching quasi-isodynamicity numerically in order to probe their resilience against trapped-particle modes. Progress has been made to extend gyrokinetic simulations to stellarator geometries, enabling us to perform the first linear gyrokinetic simulations of density-gradient-driven modes in stellarator configurations approaching quasi-isodynamicity, such as Wendelstein 7-X and more recently found configurations. These simulations appear to confirm the analytical predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call