Abstract
The effect of impurity on the electrostatic microturbulence in ADITYA-U tokamak is assessed using global gyrokinetic simulations. The realistic geometry and experimental profiles of the ADITYA-U are used, before and after argon gas seeding, to perform the simulations. Before the impurity seeding, the simulations show the existence of the trapped electron mode (TEM) instability in three distinct regions on the radial-poloidal plane. The mode is identified by its linear eigenmode structure and its characteristic propagation in the electron diamagnetic direction. The simulations with Ar1+ impurity ions in the outer-core region show a significant reduction in the turbulence and transport due to a reduction in the linear instability drive, with respect to the case without impurity. A decrease in particle and heat transport in the outer-core region modifies the plasma density profile measured after the impurity seeding. It, thus, results in the stabilization of the TEM instability in the core region. Due to the reduced turbulence activity, the electron and ion temperatures in the central region increase by about 10%.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.