Abstract
Predicting turbulent transport in nearly collisionless fusion plasmas requires one to solve kinetic (or, more precisely, gyrokinetic) equations. In spite of considerable progress, several pending issues remain; although more accurate, the kinetic calculation of turbulent transport is much more demanding in computer resources than fluid simulations. An alternative approach is based on a water-bag representation of the distribution function that is not an approximation but rather a special class of initial conditions, allowing one to reduce the full kinetic Vlasov equation into a set of hydrodynamic equations while keeping its kinetic character. The main result for the water-bag model is a lower cost in the parallel velocity direction since no differential operator associated with some approximate numerical scheme has to be carried out on this variable v∥. Indeed, a small bag number is sufficient to correctly describe the ion temperature gradient instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.