Abstract

A Hamiltonian two-field gyrofluid model is used to investigate the dynamics of an electron-ion collisionless plasma subject to a strong ambient magnetic field, within a spectral range extending from the magnetohydrodynamic (MHD) scales to the electron skin depth. This model isolates Alfvén, Kinetic Alfvén and Inertial Kinetic Alfvén waves that play a central role in space plasmas, and extends standard reduced fluid models to broader ranges of the plasma parameters. Recent numerical results are reviewed, including (i) the reconnection-mediated MHD turbulence developing from the collision of counter-propagating Alfvén wave packets, (ii) the specific features of the cascade dynamics in strongly imbalanced turbulence, including a possible link between the existence of a spectral transition range and the presence of co-propagating wave interactions at sub-ion scales, for which new simulations are reported, (iii) the influence of the ion-to-electron temperature ratio in two-dimensional collisionless magnetic reconnection. The role of electron finite Larmor radius corrections is pointed out and the extension of the present model to a four-field gyrofluid model is discussed. Such an extended model accurately describes electron finite Larmor radius effects at small or moderate values of the electron beta parameter, and also retains the coupling to slow magnetosonic waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call