Abstract

A two-field reduced gyrofluid model including electron inertia, ion finite Larmor radius corrections, and parallel magnetic field fluctuations is derived from the model of Brizard [Brizard, Phys. Fluids B 4, 1213 (1992)]. It assumes low βe, where βe indicates the ratio between the equilibrium electron pressure and the magnetic pressure exerted by a strong uniform magnetic guide field, but permits an arbitrary ion-to-electron equilibrium temperature ratio. It is shown to have a noncanonical Hamiltonian structure and provides a convenient framework for studying kinetic Alfvén wave turbulence, from magnetohydrodynamics to sub-de scales (where de holds for the electron skin depth). Magnetic energy spectra are phenomenologically determined within energy and generalized cross-helicity cascades in the perpendicular spectral plane. Arguments based on absolute statistical equilibria are used to predict the direction of the transfers, pointing out that, within the sub-ion range, the generalized cross-helicity could display an inverse cascade if injected at small scales, for example by reconnection processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.