Abstract

Pheromone-binding proteins (PBPs) are believed to control diffusion of pheromones in sensory hairs of insects. The interactions of gypsy moth (Lymantria dispar) PBPs with the sex attractant pheromone, (+)-Disparlure ((7R,8S)-epoxy-2-methyloctadecane), and the enantioselectivity of recognition are not completely understood. Enantioselectivity is important for L. dispar, because (−)-disparlure cancels the attraction of (+)-disparlure, so these moths use enantiopure (+)-disparlure for communication. We performed docking simulations of the protonated homology PBP models with the enantiomers of disparlure, 5-oxadisparlure, 10-oxadisparlure, 5-thiadisparlure and 10-thiadisparlure, together with a binding assay experiment, in which the pH profiles for the PBP-ligand combinations were surveyed. The molecular simulations revealed different amino acid residues in the binding sites, movement of specific amino acid residues at certain pH values, distinct amino acid-ligand interactions (side chain donors/acceptors, H-arene bonding, backbone donors/acceptors) and differences in the conformations of each protein-ligand complex. The pKa values obtained from the binding experiment and the results from the molecular simulations served as tools for detecting polar interactions between the PBPs and ligands. The differences found between structures docked with ligand enantiomers reveal the enantioselectivity of the gypsy moth PBPs towards the pheromone and its antipode, as well as towards enantiomers of pheromone analogs with heteroatom substitutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.