Abstract

This paper introduces a new type of gypsum-based humidity-control material. The material combines gypsum-silica gel humidity-control material with 20% sepiolite powder activated by calcium chloride. Both experimental and simulation studies were conducted to assess its humidity-control performance. The experimental results indicate that gypsum-based humidity-control material has the property of absorbing moisture in high-humidity environments and releasing moisture in low-humidity environments. Moreover, both environmental temperature and relative humidity (RH) have an impact on the material's humidity-control performance. At a relative humidity of 97.4%, the maximum equilibrium moisture content of the material is 0.225 g/g, which is 1.4 times that of the gypsum-silica gel humidity-control material and 4.5 times that of pure gypsum material. The simulation results indicate that gypsum-based humidity-control material effectively mitigates indoor relative humidity fluctuations and maintains indoor air relative humidity within a narrow range. Furthermore, the material has the potential to reduce building energy consumption. This is especially evident under climate conditions with large temperature and relative humidity differences between day and night, such as in Beijing, Paris, and Atlanta. The maximum potential energy-saving rate in Beijing can reach up to 19.31%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call