Abstract

Low-quality water such as sodic alkaline industrial wastewater is often used to irrigate crops of intensively managed urban gardening systems in the semi-arid tropics to help meet the fresh food demands of a rapidly increasing city population. An on-farm experiment was established to examine the effects of sodium (Na) and bicarbonate (HCO3−)-loaded industrial wastewater on soil and crops on the one hand, and to determine melioration effects on soil condition and plant development on the other hand. To ameliorate the sodified soil, fine-powdered gypsum (CaSO4) was applied as soil amendment onto the upper soil (0–20 cm) before sowing of crops. Depending on soil pH and exchangeable sodium percentage (ESP), which reflected the level of soil degradation (SDL), two different amounts of gypsum were applied: 6.8 t ha−1 in moderate and 10 t ha−1 in high SDL plots. Subsequently rainfed maize (Zea mays L.) and irrigated spinach (Spinacia oleracea L.) under two irrigation water qualities (clean and wastewater) were cultivated. Chemical and physical soil parameters, as well as plant root density (RLD), crop yield and concentrations of major plant nutrients and Na were determined. The results showed that gypsum application reduced soil pH on average below 8 and reduced ESP below 18%. Furthermore, gypsum-treated soils showed a significant reduction of sodium absorption rate (SAR) from 14.0 to 7.9 and aggregate stability was increased from 44.2 to 51.2%. This in return diminished Na concentration in plant tissues up to 80% and significantly increased RLD of maize. Overall, calcium (Ca) addition through the gypsum amendment changed the soil cation balance by increasing the Ca:Mg ratio from 3.5 to 7.8, which likely influenced the complex interactions between competing cations at the exchange surfaces of the soil and cation uptake by plant roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call