Abstract
Task Scheduling is a key challenging issue of Infrastructure as a Service (IaaS) based cloud data center and it is well-known NP-complete problem. As the number of users' requests increases then the load on the cloud data center will also increase gradually. To manage the heavy load on the cloud data center, in this paper, we propose multiobjective Grey Wolf Optimization (GWO) technique for task scheduling. The main objective of our proposed GWO based scheduling algorithm is to achieve optimum utilization of cloud resources for reducing both the energy consumption of the data center and total makespan of the scheduler for the given list of tasks while providing the services as requested by the users. Our proposed scheduling algorithm is compared with non meta-heuristic algorithms (First-Come-First-Serve (FCFS) and Modified Throttle (MT)), and meta-heuristic algorithms (Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Cat Swarm Optimization (CSO)). Experimental results demonstrate that the proposed GWO based scheduler outperforms all algorithms considered for performance evaluation in terms of makespan for the list of tasks, resource utilization and energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.