Abstract

The boundaries of protein coding sequences are more difficult to define at the 5′ end than at the 3′ end due to potential multiple translation initiation sites (TISs). Even in the presence of phylogenetic data, the use of sequence information only may not be sufficient for the accurate identification of TISs. Traditional proteomics approaches may also fail because the N‐termini of newly synthesized proteins are often processed. Thus ribosome profiling (ribo‐seq), producing a snapshot of the ribosome distribution across the entire transcriptome, is an attractive experimental technique for the purpose of TIS location exploration. The GWIPS‐viz (Genome Wide Information on Protein Synthesis visualized) browser (http://gwips.ucc.ie) provides free access to the genomic alignments of ribo‐seq data and corresponding mRNA‐seq data along with relevant annotation tracks. In this brief, we illustrate how GWIPS‐viz can be used to explore the ribosome occupancy at the 5′ ends of protein coding genes to assess the activity of AUG and non‐AUG TISs responsible for the synthesis of proteoforms with alternative or heterogeneous N‐termini. The presence of ribo‐seq tracks for various organisms allows for cross‐species comparison of orthologous genes and the availability of datasets from multiple laboratories permits the assessment of the technical reproducibility of the ribosome densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.