Abstract

A stable QTL, GW3, controlling grain width was identified in two populations. Its causal gene LOC_Os03g04680 was verified by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. Grain width (GW) is one of the key traits affecting grain size and determines grain yield and appearance quality in rice. Mining gene loci and elite alleles controlling GW is necessary. The GW phenotypes of the two populations were investigated in three environments, which showed abundant phenotypic variation. GW3, encoding a P450 subfamily protein, was identified and validated as a causal gene by gene-based haplotype analysis, expression analysis, gene knockout and complementation transgenic tests. The accessions with large GW values had high gene expression levels. In addition, the GW of the accessions with the GG allele was significantly greater than that of the accessions with the AA allele. The Hap 1 and Hap 3 were identified as elite haplotypes, which can increase GW. The expression levels of OsKO1, OsGA3ox1, OsGA20ox1 and OsGA20ox2 in the young panicle of A7444 were significantly greater than those in the young panicle of the mutants, indicating that GW3 may be involved in the gibberellins (GA) biosynthesis pathway to regulate GW. GA4 content detection and electron scanning analysis revealed that GA4 regulates GW by affecting glume cell size. These results provide new insights for studying the genetic mechanism of rice GW and provide a material basis for breeding high-yield rice varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.