Abstract

Fecal microbiota transplantation (FMT) is an effective means of modulating gut microbiota for the treatment of many diseases, including Clostridioides difficile infections. The gut-spleen axis has been established, and this is involved in the development and function of the spleen. However, it is not understood whether gut microbiota can be used to improve spleen function, especially in spleens disrupted by a disease or an anti-cancer treatment. In the current investigation, we established that alginate oligosaccharide (AOS)-improved gut microbiota (A10-FMT) can rescue anticancer drug busulfan-disrupted spleen vasculature and spleen function. A10-FMT improved the gene and/or protein expression of genes involved in vasculature development, increased the cell proliferation rate, enhanced the endothelial progenitor cell capability, and elevated the expression of the cell junction molecules to increase the vascularization of the spleen. This investigation found for the first time that the reestablishment of spleen vascularization restored spleen function by improving spleen immune cells and iron metabolism. These findings may be used as a strategy to minimize the side effects of anti-cancer drugs or to improve spleen vasculature-related diseases. IMPORTANCE Alginate oligosaccharide (AOS)-improved gut microbiota (A10-FMT) can rescue busulfan disrupted spleen vasculature. A10-FMT improved the cell proliferation rate, endothelial progenitor cell capability, and cell junction molecules to increase vasculature formation in the spleen. This reestablishment restored spleen function by improving spleen immune cells and iron metabolism. These findings are useful for the treatment of spleen vasculature-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call