Abstract

The prevalence of diabetes mellitus (DM) has been increasing dramatically worldwide, but the pathogenesis is still unknown. A growing amount of evidence suggests that an abnormal developmental environment in early life increases the risk of developing metabolic diseases in adult life, which is referred to as the “metabolic memory” and the Developmental Origins of Health and Disease (DOHaD) hypothesis. The mechanism of “metabolic memory” has become a hot topic in the field of DM worldwide and could be a key to understanding the pathogenesis of DM. In recent years, several large cohort studies have shown that shift workers have a higher risk of developing type 2 diabetes mellitus (T2DM) and worse control of blood glucose levels. Furthermore, a maternal high-fat diet could lead to metabolic disorders and abnormal expression of clock genes and clock-controlled genes in offspring. Thus, disorders of circadian rhythm might play a pivotal role in glucose metabolic disturbances, especially in terms of early adverse nutritional environments and the development of metabolic diseases in later life. In addition, as a peripheral clock, the gut microbiota has its own circadian rhythm that fluctuates with periodic feeding and has been widely recognized for its significant role in metabolism. In light of the important roles of the gut microbiota and circadian clock in metabolic health and their interconnected regulatory relationship, we propose that the “gut microbiota-circadian clock axis” might be a novel and crucial mechanism to decipher “metabolic memory.” The “gut microbiota-circadian clock axis” is expected to facilitate the future development of a novel target for the prevention and intervention of diabetes during the early stage of life.

Highlights

  • According to the latest data from the International Diabetes Federation (IDF), there were approximately 425 million adults with diabetes mellitus (DM) worldwide in 2017

  • In addition to clock genes, our previous study [58] and other research [67] showed that adverse early-life nutritional challenges programed metabolic diseases in later life; in the meantime, clock-control genes were significantly disrupted, such as PPARα, inositol-requiring 1 alpha (IRE1α), protein kinase RNA (PKR)-like ER kinase (PERK),and activating transcription factor 6 (ATF6) in the endoplasmic reticulum stress-associated unfolded protein response (UPR) signaling pathways, of which the expressions are rhythmic and play a key role in the link between circadian rhythm and metabolism

  • What is the best way to identify groups that are at high risk of developing diabetes early? How can an earlier intervention be carried out? How can treatment effectiveness be improved? ese are key issues in the prevention and treatment of metabolic diseases such as DM

Read more

Summary

Introduction

According to the latest data from the International Diabetes Federation (IDF), there were approximately 425 million adults with diabetes mellitus (DM) worldwide in 2017. In addition to clock genes, our previous study [58] and other research [67] showed that adverse early-life nutritional challenges programed metabolic diseases in later life; in the meantime, clock-control genes were significantly disrupted, such as PPARα, inositol-requiring 1 alpha (IRE1α), protein kinase RNA (PKR)-like ER kinase (PERK),and activating transcription factor 6 (ATF6) in the endoplasmic reticulum stress-associated unfolded protein response (UPR) signaling pathways, of which the expressions are rhythmic and play a key role in the link between circadian rhythm and metabolism. Another study showed that continuous circadian misalignment produced decreased alpha diversity, a higher ratio of Firmicutes/ Bacteriodetes, increased intestinal permeability, and changed

Increase in Firmicutes and decrease in Bacteriodetes
Findings
Butyrate Acetate Bile acid
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call