Abstract

Accumulating evidence indicates that gut microbiota dysbiosis is associated with increased blood-brain barrier (BBB) permeability and contributes to Alzheimer's disease (AD) pathogenesis. In contrast, the influence of gut microbiota on the blood-cerebrospinal fluid (CSF) barrier has not yet been studied. Here, we report that mice lacking gut microbiota display increased blood-CSF barrier permeability associated with disorganized tight junctions (TJs), which can be rescued by recolonization with gut microbiota or supplementation with short-chain fatty acids (SCFAs). Our data reveal that gut microbiota is important not only for the establishment but also for the maintenance of a tight barrier. Also, we report that the vagus nerve plays an important role in this process and that SCFAs can independently tighten the barrier. Administration of SCFAs in AppNL-G-F mice improved the subcellular localization of TJs at the blood-CSF barrier, reduced the β-amyloid (Aβ) burden, and affected microglial phenotype. Altogether, our results suggest that modulating the microbiota and administering SCFAs might have therapeutic potential in AD via blood-CSF barrier tightening and maintaining microglial activity and Aβ clearance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call