Abstract

BackgroundCaptive animals, compared to their wild counterparts, generally harbor imbalanced gut microbiota owing, in part, to their altered diets. This imbalance is particularly striking for folivores that fundamentally rely on gut microbiota for digestion, yet rarely receive sufficient dietary fiber in captivity. We examine the critically endangered Coquerel’s sifaka (Propithecus coquereli), an anatomically specialized, rather than facultative, folivore that consumes a seasonal frugo-folivorous diet in the wild, but is provisioned predominantly with seasonal foliage and orchard vegetables in captivity. Using amplicon and metagenomic sequencing applied to fecal samples collected from two wild and one captive population (each comprising multiple groups), we clarify how dietary variation underlies the perturbational effect of captivity on the structure and function of this species’ gut microbiota.ResultsThe gut microbiota of wild sifakas varied by study population, most notably in community evenness and in the abundance of diet-associated microbes from Prevotellaeceae and Lachnospiraceae. Nevertheless, the differences among wild subjects were minor compared to those evident between wild and captive sifakas: Unusually, the consortia of captive sifakas were the most diverse, but lacked representation of endemic Bacteroidetes and metagenomic capacity for essential amino-acid biosynthesis. Instead, they were enriched for complex fiber metabolizers from the Firmicutes phylum, for archaeal methanogens, and for several metabolic pathways putatively linked to plant fiber and secondary compound metabolism.ConclusionsThe relatively minor differences in gut microbial structure and function between wild sifaka populations likely reflect regional and/or temporal environmental variability, whereas the major differences observed in captive conspecifics, including the loss of endemic microbes, but gain in low-abundance taxa, likely reflect imbalanced or unstable consortia. Indeed, community perturbation may not necessarily entail decreased community diversity. Moreover, signatures of greater fiber degradation indicate that captive sifakas consume a more fibrous diet compared to their wild counterparts. These results do not mirror those typically reported for folivores and herbivores, suggesting that the direction and strength of captivity-induced ‘dysbiosis’ may not be universal across species with similar feeding strategies. We propose that tailored, species-specific dietary interventions in captivity, aimed at better approximating naturally foraged diets, could functionally ‘rewild’ gut microbiota and facilitate successful management of diverse species.

Highlights

  • Captive animals, compared to their wild counterparts, generally harbor imbalanced gut microbiota owing, in part, to their altered diets

  • The structure of the sifaka gut microbiome across populations Our three sifaka populations, comprised 50 animals (Table 1); the 46 that contributed to amplicon sequencing harbored structurally different gut microbiota, with those from the Duke Lemur Center (DLC) being the most distinct (Fig. 2)

  • For wild animals maintained under human care, a current aim is to develop mechanistic understanding of, and methods to reverse, the perturbational effect of captivity on gut microbiota [6, 8,9,10, 15,16,17,18]

Read more

Summary

Introduction

Captive animals, compared to their wild counterparts, generally harbor imbalanced gut microbiota owing, in part, to their altered diets. The gut microbiota of animal hosts perform vital functions that support nutrition, promote health, and underlie natural host behavior [1,2,3]. These key roles have led to increasing calls for microbiome science to be incorporated into conservation biology and wildlife management [4,5,6,7]. Using amplicon and metagenomic sequencing, respectively, we determine gut microbiome structure and function in three populations of the critically endangered Malagasy primate, the Coquerel’s sifaka (Propithecus coquereli). Our two sites for wild populations include the ‘Anjajavy’ Protected Area and the ‘Ankarafantsika’ National Park, Madagascar (Fig. 1); our site for the sole captive population is the Duke Lemur Center, ‘DLC,’ in North Carolina

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call