Abstract

BackgroundNeurogenic bowel dysfunction (NBD) is a major physical and psychological problem in patients with spinal cord injury (SCI), and gut dysbiosis is commonly occurs in SCI. Here, we document neurogenic bowel management of male patients with chronic traumatic complete SCI in our centre and perform comparative analysis of the gut microbiota between our patients and healthy males.MethodsA total of 43 male patients with chronic traumatic complete SCI (20 with quadriplegia and 23 with paraplegia) and 23 healthy male adults were enrolled. Clinical data and fresh stool specimens were collected from all participants. Face-to-face interviews were conducted to survey the neurogenic bowel management of 43 patients with SCI. Gut microbiomes were analysed by sequencing of the V3–V4 region of the 16S rRNA gene.ResultsNBD was common in adult male patients with chronic traumatic complete SCI. Patients with quadriplegia exhibited a longer time to defecate than did those with paraplegia and had higher NBD scores and heavier neurogenic bowel symptoms. The diversity of the gut microbiota in the SCI group was reduced, and the structural composition was different from that of the healthy adult male group. The abundance of Veillonellaceae and Prevotellaceae increased, while Bacteroidaceae and Bacteroides decreased in the SCI group. The abundance of Bacteroidaceae and Bacteroides in the quadriplegia group and Acidaminococcaceae, Blautia, Porphyromonadaceae, and Lachnoclostridium in the paraplegia group were significantly higher than those in the healthy male group. Serum biomarkers (GLU, HDL, CR, and CRP), NBD defecation time and COURSE had significant correlations with microbial community structure. Microbial community structure was significantly associated with serum biomarkers (GLU, HDL, CR, and CRP), NBD defecation time, and COURSE.ConclusionsThis study presents a comprehensive landscape of the gut microbiota in adult male patients with chronic traumatic complete SCI and documents their neurogenic bowel management. Gut microbiota dysbiosis in SCI patients was correlated with serum biomarkers and NBD symptoms.

Highlights

  • Neurogenic bowel dysfunction (NBD) is a major physical and psychological problem in patients with spinal cord injury (SCI), and gut dysbiosis is commonly occurs in SCI

  • We explored the association between the gut microbiota and environmental factors in the quadriplegia and paraplegia groups and analysed the correlation between the gut microbiota and neurogenic bowel symptoms

  • The neurogenic bowel symptoms in patients with SCI were related to some gut microbiota, which may help to explain the potential link between gut dysbiosis and NBD symptoms in patients with SCI

Read more

Summary

Introduction

Neurogenic bowel dysfunction (NBD) is a major physical and psychological problem in patients with spinal cord injury (SCI), and gut dysbiosis is commonly occurs in SCI. After complete spinal cord injury (SCI), the loss of descending control over sympathetic preganglionic neurons causes the autonomic reflex circuitry to become dysfunctional, creating pathology including autonomic dysreflexia and SCI–immune depression syndrome [1,2,3,4,5]. The two main manifestations of NBD are constipation and faecal incontinence; the reported prevalence of constipation in these patients is 40–58%, and faecal incontinence ranges from 2 to 61% [8,9,10,11] Because of these problems, compared with matched controls, patients with chronic SCI tend to spend more time in the toilet while evacuating their bowels; use suppositories, laxatives and supplemental dietary fibre more frequently to improve bowel evacuation; and require manual removal of faeces much more frequently [12,13,14,15]. One of the aims of our present study was to document neurogenic bowel management of male patients with chronic traumatic complete SCI in our centre

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call