Abstract

Long-term/high-dose glucocorticoid (GC) use results in glycolipid metabolism disorder, which severely limits its clinical application. The role of the gut microbiota and its metabolites in GC-induced glycolipid metabolism disorder remains unclear. Our previous human study found that obvious gut microbiota dysbiosis characterized by an increasing abundance of Proteobacteria and a decreased abundance of Lachnospiraceae and Faecalibacterium were observed in patients with endogenous hypercortisolism. In this study, we established a mouse model of GC-induced glycolipid metabolism disorder (Dex group) and found that the relative abundances of Proteobacteria and Parasuttrerella were increased, while the abundances of Lachnospiraceae, Faecalibacterium, and Lachnospiraceae_NK4A136_group were decreased significantly in the Dex group. Compared with the control group, serum total short-chain fatty acids (SCFAs), acetic acid, propionic acid, and GLP-1 levels were all decreased in the Dex group. The mRNA expression of the GPR41 receptor and Pcsk1 in the colon was significantly decreased in the Dex group. Furthermore, GC-induced glycolipid metabolism disorder could be alleviated by depletion of the gut microbiota or fecal bacteria transplantation with control bacteria. The abundances of Lachnospiraceae_NK4A136_group and the serum GLP-1 levels were significantly increased, while the abundances of Proteobacteria and Parasutterella were significantly decreased after fecal bacteria transplantation with control bacteria. Our work indicates that gut microbiota dysbiosis and decreased levels of serum acetic acid and propionic acid may participate in GC-induced glycolipid metabolism disorder. These findings may provide novel insights into the prevention and treatment of GC-induced metabolic disorders.IMPORTANCEThe role of the gut microbiota in glucocorticoid (GC)-induced glycolipid metabolism disorder remains unclear. In our study, gut microbiota dysbiosis characterized by an increased abundance of Proteobacteria/Parasuttrerella and a decreased abundance of Lachnospiraceae_NK4A136_group was observed in mice with GC-induced glycolipid metabolism disorder. Some bacteria were shared in our previous study in patients with endogenous hypercortisolism and the mouse model used in the study. Furthermore, the depletion of the gut microbiota and fecal bacteria transplantation with control bacteria could alleviate GC-induced glycolipid metabolism disorder. Plasma acetic acid, propionic acid, and GLP-1 and the mRNA expression of the GPR41 receptor and Pcsk1 in the colon were decreased significantly in mice with GC-induced glycolipid metabolism disorder, which indicated that the gut microbiota/SCFA/GPR41/GLP-1 axis may participate in GC-induced glycolipid metabolism disorder. Our findings indicate that the gut microbiota may serve as a novel therapeutic target for GC-related metabolic disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call