Abstract

With the global prevalence of Varroa mites, more and more beekeepers resort to confining the queen bee in a queen cage to control mite infestation or to breed superior and robust queen bees. However, the impact of such practices on the queen bee remains largely unknown. Therefore, we subjected the queen bees to a 21-day egg-laying restriction treatment (from the egg stage to the emergence of adult worker bees) and analyzed the queen bees' ovarian metabolites and gut microbiota after 21 days, aiming to assess the queen bees' quality and assist beekeepers in better hive management. Our findings revealed a significant reduction in the relative expression levels of Vg and Hex110 genes in the ovaries of egg laying-restricted queen bees compared to unrestricted egg-laying queens. The diversity of gut microbiota in the queen bee exhibited a notable decrease, accompanied by corresponding changes in the core bacteria of the microbial community, the relative abundance of Lactobacillus and Bifidobacterium increased from 22.34% to 53.14% (P = 0.01) and from 0.053% to 0.580% (P = 0.04), respectively. The relative abundance of Bombella decreased from 25.85% to 1.720% (P = 0.002). Following egg-laying restriction, the activity of the queen bee's ovaries decreased, while the metabolism of glycerophospholipids remained or stored more lipid molecules, awaiting environmental changes for the queen bee to resume egg laying promptly. Furthermore, we observed that Bombella in the queen bee's gut may regulate the queen's ovarian metabolism through tryptophan metabolism. These findings provide novel insights into the interplay among queen egg laying, gut microbiota, and ovarian metabolism. IMPORTANCE With Varroa mite infestation, beekeepers often confine the queen bee in cages for control or breeding. However, the impact on the queen bee is largely unknown. We evaluated queen bee quality by restricting egg laying and analyzing ovarian metabolites and gut microbiota. In this study, we provided a comprehensive explanation of the expression of ovarian genes, the diversity of gut microbiota, and changes in ovarian metabolism in the queen bee. Through integrated analysis of the queen bee's gut microbiota and ovarian metabolism, we discovered that the gut microbiota can regulate the queen bee's ovarian metabolism. These findings provide valuable insights into the interplay among egg laying, gut microbiota, and the reproductive health of the queen bee. Understanding these relationships can contribute to the development of better strategies for Varroa mite control and queen bee breeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.