Abstract

The latest high-throughput sequencing technologies show that there are more than 1000 types of microbiota in the human gut. These microbes are not only important to maintain human health, but also closely related to the occurrence and development of various diseases. With the development of transplantation technologies, allogeneic transplantation has become an effective therapy for a variety of end-stage diseases. However, complications after transplantation still restrict its further development. Post-transplantation complications are closely associated with a host’s immune system. There is also an interaction between a person’s gut microbiota and immune system. Recently, animal and human studies have shown that gut microbial populations and diversity are altered after allogeneic transplantations, such as liver transplantation (LT), small bowel transplantation (SBT), kidney transplantation (KT) and hematopoietic stem cell transplantation (HTCT). Moreover, when complications, such as infection, rejection and graft versus host disease (GVHD) occur, gut microbial populations and diversity present a significant dysbiosis. Several animal and clinical studies have demonstrated that taking probiotics and prebiotics can effectively regulate gut microbiota and reduce the incidence of complications after transplantation. However, the role of intestinal decontamination in allogeneic transplantation is controversial. This paper reviews gut microbial status after transplantation and its relationship with complications. The role of intervention methods, including antibiotics, probiotics and prebiotics, in complications after transplantation are also discussed. Further research in this new field needs to determine the definite relationship between gut microbial dysbiosis and complications after transplantation. Additionally, further research examining gut microbial intervention methods to ameliorate complications after transplantation is warranted. A better understanding of the relationship between gut microbiota and complications after allogeneic transplantation may make gut microbiota as a therapeutic target in the future.

Highlights

  • There are more than one thousand microbial species living in the complex human gut ecosystem and most of these species are bacteria [1]

  • Many animal and human studies have indicated that gut microbial dysbiosis is closely linked with allogeneic transplantation, such as liver transplantation, small bowel transplantation, kidney transplantation and hematopoietic stem cell transplantation, and especially with post-transplantation complications

  • In the four patients with post-transplant infections, the genus Anaerotruncus was markedly decreased compared to 14 control samples. These findings suggest that specific microbiota features have the potential to be markers to predict patient history even before transplantation

Read more

Summary

Background

There are more than one thousand microbial species living in the complex human gut ecosystem and most of these species are bacteria [1]. A DGGE analysis of the luminal and mucosal microbiota compositions in chronic rejection (CR) rats 190 days after SBT revealed that the gut microbiota in the CR rats had a decrease in the abundance of Lactobacillales bacteria, but an increase in Escherichia coli, Bacteroides spp. and Clostridium spp. After liver transplantation and during AR, loss of intestinal microvilli, tight junction damage, decrease in fecal secretory IgA and increases in blood bacteremia, endotoxin, and TNF-α were detected, along with dysbiosis of gut microbiota [52]. An early study [81] suggested that SDD could significantly reduce Gram negative aerobic bacteria and Candida colonization in the gut It appeared to reduce the high incidence of infection related to these organisms in the early post-transplant period.

Intervention methods Results
Findings
Conclusions and perspectives
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.