Abstract
Non-high-density lipoprotein cholesterol (non-HDL-c) was a strong risk factor for incident cardiovascular diseases and proved to be a better target of lipid-lowering therapies. Recently, gut microbiota has been implicated in the regulation of host metabolism. However, its causal role in the variation of non-HDL-c remains unclear. Microbial species and metabolic capacities were assessed with fecal metagenomics, and their associations with non-HDL-c were evaluated by Spearman correlation, followed by LASSO and linear regression adjusted for established cardiovascular risk factors. Moreover, integrative analysis with plasma metabolomics were performed to determine the key molecules linking microbial metabolism and variation of non-HDL-c. Furthermore, bi-directional mendelian randomization analysis was performed to determine the potential causal associations of selected species and metabolites with non-HDL-c. Decreased Eubacterium rectale but increased Clostridium sp CAG_299 were causally linked to a higher level of non-HDL-c. A total of 16 microbial capacities were found to be independently associated with non-HDL-c after correcting for age, sex, demographics, lifestyles and comorbidities, with the strongest association observed for tricarboxylic acid (TCA) cycle. Furthermore, decreased 3-indolepropionic acid and N-methyltryptamine, resulting from suppressed capacities for microbial reductive TCA cycle, functioned as major microbial effectors to the elevation of circulating non-HDL-c. Overall, our findings provided insight into the causal effects of gut microbes on non-HDL-c and uncovered a novel link between non-HDL-c and microbial metabolism, highlighting the possibility of regulating non-HDL-c by microbiota-modifying interventions. A full list of funding bodies can be found in the Sources of funding section.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.