Abstract

The gut microbiome plays a role in the regulation of the immune system. We prospectively enrolled 26 kidney transplant recipients and collected serial fecal specimens (N=85) during the first three months of transplantation. We characterized bacterial composition by polymerase chain reaction amplification of the 16S rRNA V4-V5 variable region and deep sequencing using the Illumina MiSeq platform. An increase in the relative abundance of Proteobacteria was observed in the posttransplantation specimens compared to pretransplantation specimens (P=0.04, Wilcoxon signed-rank test). In patients with posttransplant diarrhea, the mean(±standard deviation [SD]) Shannon diversity index was lower in those with diarrhea (N=6) than those without diarrhea (N=9) (2.5±0.3 vs. 3.4±0.8; P = 0.02, Wilcoxon rank-sum test). Principal coordinate analysis showed clear separation between the two groups, and linear discriminant analysis effect size (LEfSe) method revealed that Bacteroides, Ruminococcus, Coprococcus, and Dorea were significantly lower in the patients with diarrhea. Principal coordinate analysis also showed clear separation between the acute rejection (AR) group (N=3) and the no AR group (N=23) and the LEfSe method revealed significant differences between the two groups. Fecal abundance of Enterococcus was associated with Enterococcus urinary tract infection (UTI). The median Enterococcus fecal abundance was 24% (range, 8%-95%) in the three patients with Enterococcus UTI compared to 0% in the 23 patients without Enterococcus UTI (interquartile range, 0.00%-0.08%) (P=0.005, Wilcoxon rank-sum test). Our pilot study identified significant alterations in the gut microbiota after kidney transplantation. Moreover, distinct microbiota structures were observed in allograft recipients with posttransplant diarrhea, AR, and Enterococcus UTI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call