Abstract

Gut metabolism of natural products is of great interest due to the altered biological activity of the metabolites. To study the gut metabolism of the dietary furanocoumarins, the biotransformation of Angelica dahurica was studied with human gut microbiota. The major components of Avenula dahurica, including xanthotoxin (1), bergapten (2), imperatorin (3), isoimperatorin (4), oxypeucedanin (5), and byakangelicol (6), were all metabolized by the human fecal sample, and each furanocoumarin was also biotransformed by Blautia sp. MRG-PMF1 responsible for intestinal O-demethylation. Oxypeucedanin (5) and byakangelicol (6) were converted to oxypeucedanin hydrate (9) and desmethylbyakangelicin (12), respectively. The gut microbial conversion of xanthotoxin (1) and bergapten (2) with the MRG-PMF1 strain resulted in the production of xanthotoxol (7) and bergaptol (8), respectively, due to the methyl aryl ether cleavage by O-methyltransferase. Unexpectedly, the biotransformation of prenylated furanocoumarins, imperatorin (3), and isoimperatorin (4) resulted in the corresponding deprenylated furanocoumarins of xanthotoxol (7) and bergaptol (8), respectively. The cleavage of the prenyl aryl ether group by gut microbiota was unprecedented metabolism. Our data presented the first deprenylation of prenylated natural products, presumably by the anaerobic prenyl aryl ether cleavage reaction catalyzed by Co-corrinoid enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.