Abstract

Sensing nutrients within the gastrointestinal tract engages the enteroendocrine cell system to signal within the mucosa, to intrinsic and extrinsic nerve pathways, and the circulation. This signaling provides powerful feedback from the intestine to slow the rate of gastric emptying, limit postprandial glycemic excursions, and induce satiation. This review focuses on the intestinal sensing of sweet stimuli (including low-calorie sweeteners), which engage similar G-protein-coupled receptors (GPCRs) to the sweet taste receptors (STRs) of the tongue. It explores the enteroendocrine cell signals deployed upon STR activation that act within and outside the gastrointestinal tract, with a focus on the role of this distinctive pathway in regulating glucose transport function via absorptive enterocytes, and the associated impact on postprandial glycemic responses in animals and humans. The emerging role of diet, including low-calorie sweeteners, in modulating the composition of the gut microbiome and how this may impact glycemic responses of the host, is also discussed, as is recent evidence of a causal role of diet-induced dysbiosis in influencing the gut-brain axis to alter gastric emptying and insulin release. Full knowledge of intestinal STR signaling in humans, and its capacity to engage host and/or microbiome mechanisms that modify glycemic control, holds the potential for improved prevention and management of type 2 diabetes.

Highlights

  • It is widely recognized that the gastrointestinal tract is a major determinant of metabolic homeostasis, and the largest endocrine organ of the body

  • We recently reported early findings of a randomized placebo-controlled clinical study investigating the effect of diet supplementation with combined low-calorie sweeteners (LCS) over 2 weeks on glycemic responses to enteral glucose

  • These findings indicate a negative impact of habitual high LCS intake on glucose absorption and acute glycaemic control in health, and add support for the concept that high habitual intake of LCS may increase the magnitude of postprandial glycemic excursions

Read more

Summary

Gut Mechanisms Linking Intestinal Sweet Sensing to Glycemic Control

Sensing nutrients within the gastrointestinal tract engages the enteroendocrine cell system to signal within the mucosa, to intrinsic and extrinsic nerve pathways, and the circulation This signaling provides powerful feedback from the intestine to slow the rate of gastric emptying, limit postprandial glycemic excursions, and induce satiation. This review focuses on the intestinal sensing of sweet stimuli (including low-calorie sweeteners), which engage similar G-protein-coupled receptors (GPCRs) to the sweet taste receptors (STRs) of the tongue. It explores the enteroendocrine cell signals deployed upon STR activation that act within and outside the gastrointestinal tract, with a focus on the role of this distinctive pathway in regulating glucose transport function via absorptive enterocytes, and the associated impact on postprandial glycemic responses in animals and humans.

INTRODUCTION
EECS RESPOND TO INTESTINAL CARBOHYDRATES
Lingual Sweet Taste
Intestinal Sweet Taste
LCS AND THE GUT MICROBIOME
CONCLUSION
Findings
AUTHOR CONTRIBUTIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call