Abstract

AimsThe prevalence of gestational diabetes mellitus (GDM) has spurred investigations into various interconnected factors, among which gut dysbiosis is notably prominent. Although gut dysbiosis is strongly associated with GDM, the specific role of the gut microbiome in the pathogenesis of GDM remains unknown. This study aims to explore the pathogenesis of GDM from gut microbiota. Materials and methodsIn our study, we constructed two GDM mice models: one induced by a high-fat diet (HFD) and the other through fecal microbiota transplantation (FMT) from GDM patients. In vitro, we used a co-culture system of RAW264.7 and 3T3-L1 adipocytes. Key findingsWe induced a GDM-like state in pregnant mice by FMT from GDM patients, which was consistent with the HFD model. A potential mechanism identified involves the diminished abundance of SCFA-producing microbiota, which reduces SCFAs, particularly propionic acid and butyric acid. In vitro, butyric and propionic acids were observed to alleviate LPS-induced TLR4-NF-κB activation, thereby reducing inflammation levels and inhibiting adipose insulin resistance via the PI3K/AKT signaling pathway. This reduction appears to trigger the polarization of adipose tissue macrophages toward M1 and promote insulin resistance in adipose tissue. SignificanceOur study fills this knowledge gap by finding that alterations in gut microbiota have an independent impact on hyperglycemia and insulin resistance in the GDM state. In vivo and in vitro, gut dysbiosis is linked to adipose tissue inflammation and insulin resistance via the bacterial product SCFAs in the GDM state, providing new insights into the pathogenesis of GDM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call