Abstract

Using smartphones for accurate indoor localization opens a new frontier of mobile services, offering enormous opportunities to enhance users' experiences in indoor environments. Despite significant efforts on indoor localization in both academia and industry in the past two decades, highly accurate and practical smartphone-based indoor localization remains an open problem. To enable indoor location-based services (ILBS), there are several stringent requirements for an indoor localization system: highly accurate that can differentiate massive users' locations (foot-level); no additional hardware components or extensions on users' smartphones; scalable to massive concurrent users. Current GPS, Radio RSS (e.g. WiFi, Bluetooth, ZigBee), or Fingerprinting based solutions can only achieve meter-level or room-level accuracy. In this paper, we propose a practical and accurate solution that fills the long-lasting gap of smartphone-based indoor localization. Specifically, we design and implement an indoor localization ecosystem Guoguo. Guoguo consists of an anchor network with a coordination protocol to transmit modulated localization beacons using high-band acoustic signals, a realtime processing app in a smartphone, and a backend server for indoor contexts and location-based services. We further propose approaches to improve its coverage, accuracy, and location update rate with low-power consumption. Our prototype shows centimeter-level localization accuracy in an office and classroom environment. Such precise indoor localization is expected to have high impact in the future ILBS and our daily activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call