Abstract

In this work, a pre-trained convolutional neural network is employed to detect gunfire from audio excerpts of urban sounds. The pretrained convolutional neural network is fined-tuned with transfer learned features to a new task using a smaller number of training signals. Two CNN methods are applied to the time-frequency representation of the audio signals. The first CNN method is based on classifying specific events in audio signals. The second CNN method is an image-based analysis method. The accuracy of the two CNN results will be compared and analyzed based on gunfire type and retrieved urban multipath conditions. A k-means clustering algorithm is employed to identify gunfire types and parametric modeling to retrieve the urban multipath conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.