Abstract
Increased mass shootings and terrorist activities severely impact society mentally and physically. Development of real-time and cost-effective automated weapon detection systems increases a sense of safety in public. Most of the previously proposed methods were vision-based. They visually analyze the presence of a gun in a camera frame. This research focuses on gun-type (rifle, handgun, none) detection based on the audio of its shot. Mel-frequency-based audio features have been used. We compared both convolution-based and fully self-attention-based (transformers) architectures. We found transformer architecture generalizes better on audio features. Experimental results using the proposed transformer methodology on audio clips of gunshots show classification accuracy of 93.87%, with training loss and validation loss of 0.2509 and 0.1991, respectively. Based on experiments, we are convinced that our model can effectively be used as both a standalone system and in association with visual gun-detection systems for better security.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.