Abstract

AbstractWe consider point process convergence for sequences of independent and identically distributed random walks. The objective is to derive asymptotic theory for the largest extremes of these random walks. We show convergence of the maximum random walk to the Gumbel or the Fréchet distributions. The proofs depend heavily on precise large deviation results for sums of independent random variables with a finite moment generating function or with a subexponential distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.