Abstract

TNTZ quaternary superelastic coatings with a beta structure were successfully deposited by magnetron sputtering of a Ti-Nb-Zr-Ta target. In this work, we discuss the effects of argon pressure and negative substrate bias voltage on the microstructure, morphology, texture, mechanical properties and superelastic behavior of these coatings. The results show that the texture is random at high deposition pressure and it becomes {110} at the lowest deposition pressure (i.e. 0.2Pa). Applying negative bias voltage causes the disappearance of {110} texture and promotes the appearance of {100} and {111} textures. The texture evolution is related to the ion bombardment of the growing film and to the surface mobility of adatoms. The highest hardness and Young’s modulus are obtained for the Gum Metal (GM) film deposited at the lowest deposition pressure (i.e. 0.2Pa) and a bias of −200V. The Evolution of the mechanical properties is discussed as a function of the film density, the compressive stress and grains' size changes. It was found that the film deposited at 0.2Pa and floating potential presents the greatest depth recovery ratio. It is due to the fact that the film is dense and its texture is {110}. The negative bias voltage seems to have an unfavorable effect on the superelasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.