Abstract
Badlands and gullied areas are among those geomorphic environments with the highest erosion rates worldwide. Nevertheless, records of their evolution and their relations with anthropogenic land transformation are scarcer. Here we combine historical data with aerial photographs and tree-ring records to reconstruct the evolution of a badland in a Mediterranean environment of Central Spain. Historical sources suggest an anthropogenic origin of this badland landscape, caused by intense quarrying activities during the 18th century. Aerial photographs allowed detection of dramatic geomorphic changes and the evolution of an emerging vegetation cover since the 1960s, due to widespread reforestation. Finally, tree-ring analyses of exposed roots allowed quantification of recent channel incision of the main gully, and sheet erosion processes. Our results suggest that reforestation practices have influenced the initiation of an episode of incision in the main channel in the 1980s, through the hypothesized creation of disequilibrium in water-sediment balance following decoupling of hillslopes from channel processes. These findings imply an asymmetry in the geomorphic response of badlands to erosion such that in the early evolution stages, vegetation removal results in gullying, but that reforestation alone does not necessarily stabilize the landforms and may even promote renewed incision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Scientific Reports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.