Abstract

The lack of an effective analgesic treatment makes pain a clinical challenge and the need of a novel approach to identify new agents is urgent. In this scenario I2-ligands can be considered an alternative strategy in pain therapy. The development of an <em>ex vivo</em> model useful for the evaluation of functional activities at both a2 and I2-IBs (imidazoline binding sites) is an important task in pharmacological sciences since several I2 ligands display activity also towards a receptors. The present study aims to develop an <em>ex vivo</em> model for estimating the activity of I2-IBs ligands in a biological sample where a1 and a2 adrenergic receptors are present. For this purpose the imidalzoline endogenous ligand, harmane, reference compounds, 2BFI and BU224, and imidazoline derivatives 1-3 have been selected taking into account their in vitro activity towards IBs and adrenergic receptors. All compounds have been tested <em>ex vivo</em> in guinea pig-ileum where a2A-ARs are prejunctionally and I2-IBS postjunctionally localized. Adrenergic component has been identified by the studying the interference of compounds on the electrically-evoked contraction while I2-IBs activity by testing the ability of compounds to inhibit the carbachol-evoked contractions in the presence of prazosin to mask the a1 adrenoceptors. Compounds 1 and 2 were found I2-IBs antago nists (pIC50=4.2 and 4.0, respectively) whereas compound 3 was I2-IBs agonist (EC50=0.38 mM); All ligands were a2 adrenergic agonists. This paper suggests guinea-pig ileum as the first <em>ex vivo</em> approach for establishing both the intrinsic activity of I2-IBs ligands and the physiological correlation between IBs and adrenergic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.