Abstract
Together with the synthesis and experimental characterization of 14 hybrid materials containing [UO2 X4 ]2- (X=Cl- and Br- ) and organic cations, we report on novel methods for determining correlation trends in their formation enthalpy (ΔHf ) and observed vibrational signatures. ΔHf values were analyzed through isothermal acid calorimetry and a Density Functional Theory+Thermodynamics (DFT+T) approach with results showing good agreement between theory and experiment. Three factors (packing efficiency, cation protonation enthalpy, and hydrogen bonding energy [ ]) were assessed as descriptors for trends in ΔHf . Results demonstrated a strong correlation between and ΔHf , highlighting the importance of hydrogen bonding networks in determining the relative stability of solid-state hybrid materials. Lastly, we investigate how hydrogen bonding networks affect the vibrational characteristics of uranyl solid-state materials using experimental Raman and IR spectroscopy and theoretical bond orders and find that hydrogen bonding can red-shift U≡O stretching modes. Overall, the tightly integrated experimental and theoretical studies presented here bridge the trends in macroscopic thermodynamic energies and spectroscopic features with molecular-level details of the geometry and electronic structure. This modeling framework forms a basis for exploring 3D hydrogen bonding as a tunable design feature in the pursuit of supramolecular materials by rational design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.