Abstract
The transmission of highly charged ions through nanocapillaries in insulating polyethylene terephthalate (PET) polymers was investigated. In experiments at laboratories in RIKEN (Japan) and HMI (Germany) different detection methods were applied to study the ion current dependence in a wide range covering two orders of magnitude. At HMI an electrostatic ion spectrometer was used and at RIKEN a two-dimensional position sensitive detector was implemented. New PET samples with parallel capillaries and low density were manufactured. For tilted capillaries, the ions are guided along the capillary axis, since the majority of ions are deflected in a charge patch created in the capillary entrance. The results provide insights into the mechanisms of capillary guiding. The fraction of transmitted ions was found to be nearly independent on the incident ion current indicating a sudden increase in the discharge current depleting the entrance charge patch. The experimental results were well-reproduced by model calculations based on a nonlinear (exponential) expression for the discharge current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.