Abstract

Laser-cooled atoms from a low-velocity atomic source are guided in a hollow-core optical fiber using the evanescent-wave dipole force from blue-detuned laser light launched into the glass region of the fiber. The transverse velocity of the guided atoms corresponds to a temperature of $50 \ensuremath{\mu}\mathrm{K}.$ We achieve a maximum flux through a 23.5-cm-long fiber of 590 000 atoms/second with a laser power of 55 mWatts at a detuning of 6 GHz. With larger detunings of 40 GHz, spontaneous emission from the atoms inside the fiber can be suppressed and the atom's internal-state population is preserved. We identify two major loss mechanisms for the guiding process and discuss possible solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.