Abstract

Recently, object detection has gained significant progress in remote sensing images. Nevertheless, we conclude two defects in remote sensing image object detection. At first, most methods rely on feature pyramid, but the features of different levels would influence each other when we use top-down operation. Second, the traditional label assignment strategy cannot assign suitable labels, as it adopts the fixed intersection over union (IoU) threshold to divide positive samples and negative samples during training. According to the problems we pointed out, a simple yet effective framework is employed to eliminate these two limitations. It integrates two novel components: aware feature pyramid network (AFPN) and group assignment strategy (GAS). AFPN is to mitigate the adverse effects caused by the first problem. Specifically, it learns a vector for the higher level features in the feature pyramid to obtain clean features. As for the second limitation, we recommend a new label assignment strategy named GAS to address this problem. Samples will be grouped according to their overlaps with ground truth, and then, they are assigned to positive or negative labels in each group. Extensive experiments are conducted on the large-scale object detection dataset DIOR and DOTA. With the newly introduced two key components, our model significantly improves the detection accuracy. Without bells and whistles, our proposed method achieves 2.0% and 1.9% higher mean average precision (mAP) than Faster R-CNN with FPN when using ResNet50 and ResNet101 as the backbones, respectively. Finally, we obtain 73.3% mAP on the DIOR dataset without any tricks. Our code is available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/hm-better/dior_detect</uri> .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.