Abstract

A kinetic-magnetohydrodynamic model with kinetic pressure closure is derived from a consistent guiding-centre framework. Higher-order (gyroviscous) corrections to the pressure tensor are derived in complex geometry from a reduced kinetic equation. The proposed model allows for flows of the order of the thermal ion velocity, taking into account important centrifugal effects due to the E × B flow, as well as the effects of diamagnetic flows associated with finite Larmor radius corrections to both ion fluid inertia and long mean-free path contributions. Wave–particle interactions, such as toroidal drift-resonance, are retained. Furthermore, the linearised model includes a quasi-neutrality equation, allowing the effects of a parallel electric field to be studied in fast rotating tokamak plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.