Abstract

A drift-kinetic theory for ion phase-space vortices in magnetized plasmas is developed, taking into account the effects of the ion polarization and anisotropic heating by ion beams. It provides a theoretical explanation for the bipolar electrostatic structures in the auroral zone of the Earth's magnetosphere and their spatial and temporal scales, as observed by S3-3, Viking, FREJA, Polar, and FAST spacecrafts. Several types of quasi-three-dimensional ion holes are obtained analytically, in the form of either cylinders or ellipsoids. Although topologically different, they produce similar signals on the spacecraft and cannot be distinguished on the basis of the existing satellite data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.