Abstract

A low-density-core target with buried high density layers is proposed to improve the transport of fast electrons and involved problems are investigated by using two-dimensional particle-in-cell simulations. It is demonstrated that this target can collimate the fast electrons efficiently and lead to a better beam quality. The enhancement is attributed to the weakening of the two stream instability and the better collimation by the self-generated multilayer megagauss magnetic field as well as the baroclinic magnetic field. Comparing this to that without buried high density layers, the energy flux of fast electrons is increased by a factor of about 1.8 and has a narrower transverse distribution in space. Besides, the dependence of the efficiency on the target parameters is examined, and the optimal target parameters are also obtained. Such a target can be useful to many applications, such as fast ignition in inertial fusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.