Abstract
Summary form only given. For the past decade, photonic crystals, also known as photonic bandgap (PBG) materials, have inspired great interest because of their novel scientific and engineering applications such as the inhibition of spontaneous emission, thresholdless lasers, optical circuits, antennas, waveguides, detectors, fibers, and so on. Creating defect states within the PBG are very important for such applications. Recently, we have reported the eigenmode splitting due to coupling of the localized defects and guiding of the electromagnetic (EM) waves through a periodic arrangement of such defects in three-dimensional (3D) photonic crystals. Although the modes of each cavity were tightly confined at the defect sites, overlapping between the nearest-neighbor modes is enough to provide the propagation of photons via hopping. We report on the observation of guiding and bending of EM wave through evanescent defect modes for three different PBG waveguide structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.