Abstract
The problem of constructing an algorithm for automatic tracking of a ground object for a guidance system (GS) for an unmanned aerial vehicle (UAV) is considered. The guidance system includes a thermal imaging target coordinator with a combined correlation-contrast direction finding algorithm and a strapdown inertial navigation system. Guidance takes place under conditions of information counteraction, which causes random interruptions in information and random changes in the power of interference, which are recorded by the corresponding indicators. A combined noise-resistant automatic tracking algorithm is obtained, using the readings of information interruption indicators, interference power, and measuring bearing angles, based on the theory of systems with a random jump structure. An example is given that illustrates the operation of the algorithm and demonstrates the satisfactory accuracy of automatic tracking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Известия Российской академии наук. Теория и системы управления
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.