Abstract

ObjectivesThis study developed a new model for risk assessment of immuno-glycolysis-related genes for lung adenocarcinoma (LUAD) patients to predict prognosis and immunotherapy efficacy.MethodsLUAD samples and data obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases are used as training and test columns, respectively. Twenty-two (22) immuno-glycolysis-related genes were screened, the patients diagnosed with LUAD were divided into two molecular subtypes by consensus clustering of these genes. The initial prognosis model was developed using the multiple regression analysis method and Receiver Operating characteristic (ROC) analysis was used to verify its predictive potential. Gene set enrichment analysis (GSEA) showed the immune activities and pathways in different risk populations, we calculated immune checkpoints, immune escape, immune phenomena (IPS), and tumor mutation burden (TMB) based on TCGA datasets. Finally, the relationship between the model and drug sensitivity was analyzed.ResultsFifteen (15) key differentially expressed genes (DEGs) with prognostic value were screened and a new prognostic model was constructed. Four hundred and forty-three (443) samples were grouped into two different risk cohorts based on median model risk values. It was observed that survival rates in high-risk groups were significantly low. ROC curves were used to evaluate the model’s accuracy in determining the survival time and clinical outcome of LUAD patients. Cox analysis of various clinical factors proved that the risk score has great potential as an independent prognostic factor. The results of immunological analysis can reveal the immune infiltration and the activity of related functions in different pathways in the two risk groups, and immunotherapy was more effective in low-risk patients. Most chemotherapeutic agents are more sensitive to low-risk patients, making them more likely to benefit.ConclusionA novel prognostic model for LUAD patients was established based on IGRG, which could more accurately predict the prognosis and an effective immunotherapy approach for patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.