Abstract

In the aim of finding the optimal solar cell structure which allows better efficiency, stability and reduced cost, a general study of a Methyl Ammonium lead Iodide CH3NH3PbI3 based perovskite solar cell is made. Three different electron transport material compounds ETMs; TiO2, ZnO and SnO2 are comparatively studied considering the same hole transport material HTM, Spiro-OMeTAD. The photovoltaic parameters, i.e. the open circuit voltage (Voc), the short circuit current (Jsc) and the power conversion efficiency (PCE) are performed considering the ETM layers thicknesses, and the defect densities in both interfaces ETM/Perovskite and Perovskite/HTM. It is found that solar cell with SnO2 present the highest PCE for almost all configurations. Finally, the optimized cell is simulated with different organic and inorganic HTMs such as PEDOT: PSS, Cul and CuSbS2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.