Abstract

AbstractIn polymer solution coatings below the glass transition temperature of the pure polymer, the coating can go undergo a glass transition and develop stresses during drying. When stresses develop, a non‐Fickian model accurately describes solvent mass transport in drying polymer coatings. The non‐Fickian model includes the solvent transport due to both stress and concentration gradients. This article presents a non‐Fickian model, which predicts a lower residual solvent than does the corresponding Fickian model. We showed in an earlier article that the non‐Fickian model predicts trapping skinning (higher residual solvent under more intense operating conditions) at higher drying gas‐flow rates. In this article, the non‐Fickian model was used to investigate how the gas‐flow rate, dry film thickness, and substrate thickness affect the residual solvent for a single‐zone dryer. This work recommends guidelines for choosing gas‐flow rates, gas temperatures, and substrate thickness to minimize the residual solvent. The model predictions show that, at any gas temperature, the residual solvent is minimum at an intermediate gas‐flow rate. The trapping skinning effect is less evident in thicker coatings and substrates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 477–486, 2003

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.